One-Step Biosynthesis of α-Keto-γ-Methylthiobutyric Acid from L-Methionine by an Escherichia coli Whole-Cell Biocatalyst Expressing an Engineered L-Amino Acid Deaminase from Proteus vulgaris

نویسندگان

  • Gazi Sakir Hossain
  • Jianghua Li
  • Hyun-dong Shin
  • Guocheng Du
  • Miao Wang
  • Long Liu
  • Jian Chen
چکیده

α-Keto-γ-methylthiobutyric acid (KMTB), a keto derivative of l-methionine, has great potential for use as an alternative to l-methionine in the poultry industry and as an anti-cancer drug. This study developed an environment friendly process for KMTB production from l-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered l-amino acid deaminase (l-AAD) from Proteus vulgaris. We first overexpressed the P. vulgaris l-AAD in E. coli BL21 (DE3) and further optimized the whole-cell transformation process. The maximal molar conversion ratio of l-methionine to KMTB was 71.2% (mol/mol) under the optimal conditions (70 g/L l-methionine, 20 g/L whole-cell biocatalyst, 5 mM CaCl2, 40°C, 50 mM Tris-HCl [pH 8.0]). Then, error-prone polymerase chain reaction was used to construct P. vulgaris l-AAD mutant libraries. Among approximately 104 mutants, two mutants bearing lysine 104 to arginine and alanine 337 to serine substitutions showed 82.2% and 80.8% molar conversion ratios, respectively. Furthermore, the combination of these mutations enhanced the catalytic activity and molar conversion ratio by 1.3-fold and up to 91.4% with a KMTB concentration of 63.6 g/L. Finally, the effect of immobilization on whole-cell transformation was examined, and the immobilized whole-cell biocatalyst with Ca2+ alginate increased reusability by 41.3% compared to that of free cell production. Compared with the traditional multi-step chemical synthesis, our one-step biocatalytic production of KMTB has an advantage in terms of environmental pollution and thus has great potential for industrial KMTB production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-step biosynthesis of α-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase from Proteus vulgaris

This work aimed to develop a whole-cell biotransformation process for the production of α-ketoisocaproate from L-leucine. A recombinant Escherichia coli strain was constructed by expressing an L-amino acid deaminase from Proteus vulgaris. To enhance α-ketoisocaproate production, the reaction conditions were optimized as follows: whole-cell biocatalyst 0.8 g/L, leucine concentration 13.1 g/L, te...

متن کامل

Tuning the transcription and translation of L-amino acid deaminase in Escherichia coli improves α-ketoisocaproate production from L-leucine

α-Ketoisocaproate (KIC) is used widely in the pharmaceutical and nutraceutical industries. In previous studies, we achieved a one-step biosynthesis of KIC from l-leucine, using an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase (l-AAD) from Proteus vulgaris. Herein, we report the fine-tuning of l-AAD gene expression in E. coli BL21 (DE3) at the transcriptional and t...

متن کامل

Preliminary Report of NAD+-Dependent Amino Acid Dehydrogenase Producing Bacteria Isolated from Soil

Amino acid dehydrogenases (L-amino acid: oxidoreductase deaminating EC 1.4.1.X) are members of the wider superfamily of oxidoreductases that catalyze the reversible oxidative deamination of an amino acid to its keto acid and ammonia with the concomitant reduction of either NAD+, NADP+ or FAD. These enzymes have been received much attention as biocatalysts for use in biosensors or diagnostic kit...

متن کامل

Homocysteine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis.

In Escherichia coli the sulfur-containing amino acid homocysteine (Hcy) is the last intermediate on the methionine biosynthetic pathway. Supplementation of a glucose-based minimal medium with Hcy at concentrations greater than 0.2 mM causes the growth of E. coli Frag1 to be inhibited. Supplementation of Hcy-treated cultures with combinations of branched-chain amino acids containing isoleucine o...

متن کامل

The physiology of L-methionine catabolism to the secondary metabolite ethylene by Escherichia coli.

Catabolism of L-methionine by Escherichia coli strain B SPAO led to the formation of ethylene as a secondary metabolite (ethylenogenesis). Methionine was initially deaminated by a transamination reaction to the 2-oxo acid 2-oxo-4-methylthiobutyric acid (KMBA) which was then converted to ethylene. The utilization of L-methionine as an additional nitrogen source was investigated by examining ethy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014